Astrocyte development in the cerebral cortex: Complexity of their origin, genesis, and maturation

Author:

Clavreul Solène,Dumas Laura,Loulier Karine

Abstract

In the mammalian brain, astrocytes form a heterogeneous population at the morphological, molecular, functional, intra-, and inter-region levels. In the past, a few types of astrocytes have been first described based on their morphology and, thereafter, according to limited key molecular markers. With the advent of bulk and single-cell transcriptomics, the diversity of astrocytes is now progressively deciphered and its extent better appreciated. However, the origin of this diversity remains unresolved, even though many recent studies unraveled the specificities of astroglial development at both population and individual cell levels, particularly in the cerebral cortex. Despite the lack of specific markers for each astrocyte subtype, a better understanding of the cellular and molecular events underlying cortical astrocyte diversity is nevertheless within our reach thanks to the development of intersectional lineage tracing, microdissection, spatial mapping, and single-cell transcriptomic tools. Here we present a brief overview describing recent findings on the genesis and maturation of astrocytes and their key regulators during cerebral cortex development. All these studies have considerably advanced our knowledge of cortical astrogliogenesis, which relies on a more complex mode of development than their neuronal counterparts, that undeniably impact astrocyte diversity in the cerebral cortex.

Funder

Institut National de la Santé et de la Recherche Médicale

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference100 articles.

1. Multicolor multiscale brain imaging with chromatic multiphoton serial microscopy.;Abdeladim;Nat. Commun.,2019

2. Mechanisms of Cortical Differentiation;Adnani;International review of cell and molecular biology,2018

3. Fate mapping of neural stem cell niches reveals distinct origins of human cortical astrocytes.;Allen;Science,2022

4. Distinct cortical migrations from the medial and lateral ganglionic eminences.;Anderson;Dev. Camb. Engl.,2001

5. Changing numbers of neuronal and non-neuronal cells underlie postnatal brain growth in the rat.;Bandeira;Proc. Natl. Acad. Sci. U.S.A.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3