Enhancing spiking neural networks with hybrid top-down attention

Author:

Liu Faqiang,Zhao Rong

Abstract

As the representatives of brain-inspired models at the neuronal level, spiking neural networks (SNNs) have shown great promise in processing spatiotemporal information with intrinsic temporal dynamics. SNNs are expected to further improve their robustness and computing efficiency by introducing top-down attention at the architectural level, which is crucial for the human brain to support advanced intelligence. However, this attempt encounters difficulties in optimizing the attention in SNNs largely due to the lack of annotations. Here, we develop a hybrid network model with a top-down attention mechanism (HTDA) by incorporating an artificial neural network (ANN) to generate attention maps based on the features extracted by a feedforward SNN. The attention map is then used to modulate the encoding layer of the SNN so that it focuses on the most informative sensory input. To facilitate direct learning of attention maps and avoid labor-intensive annotations, we propose a general principle and a corresponding weakly-supervised objective, which promotes the HTDA model to utilize an integral and small subset of the input to give accurate predictions. On this basis, the ANN and the SNN can be jointly optimized by surrogate gradient descent in an end-to-end manner. We comprehensively evaluated the HTDA model on object recognition tasks, which demonstrates strong robustness to adversarial noise, high computing efficiency, and good interpretability. On the widely-adopted CIFAR-10, CIFAR-100, and MNIST benchmarks, the HTDA model reduces firing rates by up to 50% and improves adversarial robustness by up to 10% with comparable or better accuracy compared with the state-of-the-art SNNs. The HTDA model is also verified on dynamic neuromorphic datasets and achieves consistent improvements. This study provides a new way to boost the performance of SNNs by employing a hybrid top-down attention mechanism.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference59 articles.

1. Learning expectation in insects: a recurrent spiking neural model for spatio-temporal representation;Arena;Neural Netw,2012

2. “Multiple object recognition with visual attention,”;Ba,2015

3. Layer normalization;Ba,2016

4. Mechanisms of top-down attention;Baluch;Trends Neurosci,2011

5. Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations;Benjamin;Proc. IEEE,2014

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3