Motion sensitive network for action recognition in control and decision-making of autonomous systems

Author:

Gu Jialiang,Yi Yang,Li Qiang

Abstract

Spatial-temporal modeling is crucial for action recognition in videos within the field of artificial intelligence. However, robustly extracting motion information remains a primary challenge due to temporal deformations of appearances and variations in motion frequencies between different actions. In order to address these issues, we propose an innovative and effective method called the Motion Sensitive Network (MSN), incorporating the theories of artificial neural networks and key concepts of autonomous system control and decision-making. Specifically, we employ an approach known as Spatial-Temporal Pyramid Motion Extraction (STP-ME) module, adjusting convolution kernel sizes and time intervals synchronously to gather motion information at different temporal scales, aligning with the learning and prediction characteristics of artificial neural networks. Additionally, we introduce a new module called Variable Scale Motion Excitation (DS-ME), utilizing a differential model to capture motion information in resonance with the flexibility of autonomous system control. Particularly, we employ a multi-scale deformable convolutional network to alter the motion scale of the target object before computing temporal differences across consecutive frames, providing theoretical support for the flexibility of autonomous systems. Temporal modeling is a crucial step in understanding environmental changes and actions within autonomous systems, and MSN, by integrating the advantages of Artificial Neural Networks (ANN) in this task, provides an effective framework for the future utilization of artificial neural networks in autonomous systems. We evaluate our proposed method on three challenging action recognition datasets (Kinetics-400, Something-Something V1, and Something-Something V2). The results indicate an improvement in accuracy ranging from 1.1% to 2.2% on the test set. When compared with state-of-the-art (SOTA) methods, the proposed approach achieves a maximum performance of 89.90%. In ablation experiments, the performance gain of this module also shows an increase ranging from 2% to 5.3%. The introduced Motion Sensitive Network (MSN) demonstrates significant potential in various challenging scenarios, providing an initial exploration into integrating artificial neural networks into the domain of autonomous systems.

Publisher

Frontiers Media SA

Reference39 articles.

1. Flamingo: a visual language model for few-shot learning;Alayrac;Adv. Neur. Inf. Proc. Syst,2022

2. A short note about kinetics-600;Carreira;arXiv preprint arXiv:1808.01340,2018

3. “Quo vadis, action recognition? A new model and the kinetics dataset,”;Carreira;Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017

4. “Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks,”;Chattopadhay;2018 IEEE Winter Conference on Applications of Computer Vision (WACV),2018

5. Complementary fusion of multi-features and multi-modalities in sentiment analysis;Chen;arXiv preprint arXiv:1904.08138,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3