Oxygen gradient generator to improve in vitro modeling of ischemic stroke

Author:

Santiago João,Kreutzer Joose,Bossink Elsbeth,Kallio Pasi,le Feber Joost

Abstract

IntroductionIn the core of a brain infarct, perfusion is severely impeded, and neuronal death occurs within minutes. In the penumbra, an area near the core with more remaining perfusion, cells initially remain viable, but activity is significantly reduced. In principle, the penumbra can be saved if reperfusion is established on time, making it a promising target for treatment. In vitro models with cultured neurons on microelectrode arrays (MEAs) provide a useful tool to investigate how ischemic stroke affects neuronal functioning. These models tend to be uniform, focusing on the isolated penumbra, and typically lack adjacent regions such as a core and unaffected regions (normal perfusion). However, processes in these regions may affect neuronal functioning and survival in the penumbra.Materials and methodsHere, we designed, fabricated, and characterized a cytocompatible device that generates an oxygen gradient across in vitro neuronal cultures to expose cells to hypoxia of various depths from near anoxia to near normoxia. This marks a step in the path to mimic core, penumbra, and healthy tissue, and will facilitate better in vitro modeling of ischemic stroke.ResultsThe generator forms a stable and reproducible gradient within 30 min. Oxygen concentrations at the extremes are adjustable in a physiologically relevant range. Application of the generator did not negatively affect electrophysiological recordings or the viability of cultures, thus confirming the cytocompatibility of the device.DiscussionThe developed device is able to impose an oxygen gradient on neuronal cultures and may enrich in vitro stroke models.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3