Statistical image properties predict aesthetic ratings in abstract paintings created by neural style transfer

Author:

Geller Hannah Alexa,Bartho Ralf,Thömmes Katja,Redies Christoph

Abstract

Artificial intelligence has emerged as a powerful computational tool to create artworks. One application is Neural Style Transfer, which allows to transfer the style of one image, such as a painting, onto the content of another image, such as a photograph. In the present study, we ask how Neural Style Transfer affects objective image properties and how beholders perceive the novel (style-transferred) stimuli. In order to focus on the subjective perception of artistic style, we minimized the confounding effect of cognitive processing by eliminating all representational content from the input images. To this aim, we transferred the styles of 25 diverse abstract paintings onto 150 colored random-phase patterns with six different Fourier spectral slopes. This procedure resulted in 150 style-transferred stimuli. We then computed eight statistical image properties (complexity, self-similarity, edge-orientation entropy, variances of neural network features, and color statistics) for each image. In a rating study, we asked participants to evaluate the images along three aesthetic dimensions (Pleasing, Harmonious, and Interesting). Results demonstrate that not only objective image properties, but also subjective aesthetic preferences transferred from the original artworks onto the style-transferred images. The image properties of the style-transferred images explain 50 – 69% of the variance in the ratings. In the multidimensional space of statistical image properties, participants considered style-transferred images to be more Pleasing and Interesting if they were closer to a “sweet spot” where traditional Western paintings (JenAesthetics dataset) are represented. We conclude that NST is a useful tool to create novel artistic stimuli that preserve the image properties of the input style images. In the novel stimuli, we found a strong relationship between statistical image properties and subjective ratings, suggesting a prominent role of perceptual processing in the aesthetic evaluation of abstract images.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference118 articles.

1. Quantifying aesthetic preference for chaotic patterns.;Aks;Empir. Stud. Arts,1996

2. Liking of art and the perception of color.;Altmann;J. Exp. Psychol. Hum. Percept. Perform.,2021

3. JenAesthetics subjective dataset: Analyzing paintings by subjective scores.;Amirshahi;Lect. Notes Comput. Sci.,2015

4. PHOG analysis of self-similarity in esthetic images.;Amirshahi;Proc. SPIE,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3