Toward a more nuanced understanding of probability estimation biases

Author:

Branch Fallon,Hegdé Jay

Abstract

In real life, we often have to make judgements under uncertainty. One such judgement task is estimating the probability of a given event based on uncertain evidence for the event, such as estimating the chances of actual fire when the fire alarm goes off. On the one hand, previous studies have shown that human subjects often significantly misestimate the probability in such cases. On the other hand, these studies have offered divergent explanations as to the exact causes of these judgment errors (or, synonymously, biases). For instance, different studies have attributed the errors to the neglect (or underweighting) of the prevalence (or base rate) of the given event, or the overweighting of the evidence for the individual event (‘individuating information’), etc. However, whether or to what extent any such explanation can fully account for the observed errors remains unclear. To help fill this gap, we studied the probability estimation performance of non-professional subjects under four different real-world problem scenarios: (i) Estimating the probability of cancer in a mammogram given the relevant evidence from a computer-aided cancer detection system, (ii) estimating the probability of drunkenness based on breathalyzer evidence, and (iii & iv) estimating the probability of an enemy sniper based on two different sets of evidence from a drone reconnaissance system. In each case, we quantitatively characterized the contributions of the various potential explanatory variables to the subjects’ probability judgements. We found that while the various explanatory variables together accounted for about 30 to 45% of the overall variance of the subjects’ responses depending on the problem scenario, no single factor was sufficient to account for more than 53% of the explainable variance (or about 16 to 24% of the overall variance), let alone all of it. Further analyses of the explained variance revealed the surprising fact that no single factor accounted for significantly more than its ‘fair share’ of the variance. Taken together, our results demonstrate quantitatively that it is statistically untenable to attribute the errors of probabilistic judgement to any single cause, including base rate neglect. A more nuanced and unifying explanation would be that the actual biases reflect a weighted combination of multiple contributing factors, the exact mix of which depends on the particular problem scenario.

Funder

Army Research Office

Publisher

Frontiers Media SA

Subject

General Psychology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3