The application of network agenda setting model during the COVID-19 pandemic based on latent dirichlet allocation topic modeling

Author:

Liu Kai,Geng Xiaoyu,Liu Xiaoyan

Abstract

Based on Network Agenda Setting Model, this study collected 42,516 media reports from Party Media, commercial media, and We Media of China during the COVID-19 pandemic. We trained LDA models for topic clustering through unsupervised machine learning. Questionnaires (N = 470) and social network analysis methods were then applied to examine the correlation between media network agendas and public network agendas in terms of explicit and implicit topics. The study found that the media reports could be classified into 14 topics by the LDA topic modeling, and the three types of media presented homogeneity in the topics of their reports, yet had their own characteristics; there was a significant correlation between the media network agenda and the public network agenda, and the We Media reports had the most prominent effect on the public network agenda; the correlation between the media agenda and the implicit public agenda was higher than that of the explicit public agenda. Overall, findings showed a significant correlation between network agendas among different media.

Publisher

Frontiers Media SA

Subject

General Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3