Identifying Student Subgroups as a Function of School Level Attributes: A Multilevel Latent Class Analysis

Author:

Sideridis Georgios D.,Tsaousis Ioannis,Al-Harbi Khaleel

Abstract

The purpose of the present study was to profile high school students’ achievement as a function of their demographic characteristics, parent attributes (e.g., education), and school behaviors (e.g., number of absences). Students were nested within schools in the Saudi Arabia Kingdom. Out of a large sample of 500k, participants involved 3 random samples of 2,000 students measured during the years 2016, 2017, and 2018. Randomization was conducted at the student level to ensure that all school units will be represented and at their respective frequency. Students were nested within 50 high schools. We adopted the multilevel latent profile analysis protocol put forth by Schmiege et al. (2018) and Mäkikangas et al. (2018) that account for nested data and tested latent class structure invariance over time. Results pointed to the presence of a 4-profile solution based on BIC, the Bayes factor, and several information criteria put forth by Masyn (2013). Latent profile separation was mostly guided by parents’ education and the number of student absences (being positive and negative predictors of high achievement classes, respectively). Two models tested whether the proportions of level 1 profiles to level 2 units are variable and whether level 2 profiles vary as a function of level 1 profiles. Results pointed to the presence of significant variability due to schools.

Publisher

Frontiers Media SA

Subject

General Psychology

Reference89 articles.

1. Student, school, parent connectedness, and school risk behaviors of adolescents in Saudi Arabia.;AlMakadma;Int. J. Pediatr. Adolesc. Med.,2015

2. Adolescent behavioral, affective, and cognitive engagement in school: relationship to dropout.;Archambault;J. Sch. Health,2009

3. Multilevel mixture models;Asparouhov;Advances in Latent Variable Mixture Models,2008

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3