Monte Carlo simulation with confusion matrix paradigm – A sample of internal consistency indices

Author:

Cheng Yongtian,Pérez-Díaz Pablo A.,Petrides K. V.,Li Johnson

Abstract

Monte Carlo simulation is a common method of providing empirical evidence to verify statistics used in psychological studies. A representative set of conditions should be included in simulation studies. However, several recently published Monte Carlo simulation studies have not included the conditions of the null distribution of the statistic in their evaluations or comparisons of statistics and, therefore, have drawn incorrect conclusions. This present study proposes a design based on a common statistic evaluation procedure in psychology and machine learning, using a confusion matrix with four cells: true positive, true negative, false negative modified, and false positive modified. To illustrate this design, we employ an influential Monte Carlo simulation study by Trizano-Hermosilla and Alvarado (2016), which concluded that the Omega-indexed internal consistency should be preferred over other alternatives. Our results show that Omega can report an acceptable level of internal consistency (i.e., > 0.7) in a population with no relationship between every two items in some conditions, providing novel empirical evidence for comparing internal consistency indices.

Publisher

Frontiers Media SA

Subject

General Psychology

Reference43 articles.

1. Simulating data for clinical research: a tutorial;Beaujean;J. Psychoeduc. Assess.,2018

2. Package "GPArotation.";Bernaards,2015

3. Correcting for bias in psychology: a comparison of meta-analytic methods;Carter;Adv. Methods Pract. Psychol. Sci.,2019

4. From alpha to omega and beyond! A look at the past, present, and (possible) future of psychometric soundness in the journal of applied psychology;Cortina;J. Appl. Psychol.,2020

5. Using likert-type scales in the social sciences;Croasmun;J. Adult Educ.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3