Author:
Ruan Yang,Du Mengyun,Ni Tongguang
Abstract
Electroencephalogram (EEG) signals are not easily camouflaged, portable, and noninvasive. It is widely used in emotion recognition. However, due to the existence of individual differences, there will be certain differences in the data distribution of EEG signals in the same emotional state of different subjects. To obtain a model that performs well in classifying new subjects, traditional emotion recognition approaches need to collect a large number of labeled data of new subjects, which is often unrealistic. In this study, a transfer discriminative dictionary pair learning (TDDPL) approach is proposed for across-subject EEG emotion classification. The TDDPL approach projects data from different subjects into the domain-invariant subspace, and builds a transfer dictionary pair learning based on the maximum mean discrepancy (MMD) strategy. In the subspace, TDDPL learns shared synthesis and analysis dictionaries to build a bridge of discriminative knowledge from source domain (SD) to target domain (TD). By minimizing the reconstruction error and the inter-class separation term for each sub-dictionary, the learned synthesis dictionary is discriminative and the learned low-rank coding is sparse. Finally, a discriminative classifier in the TD is constructed on the classifier parameter, analysis dictionary and projection matrix, without the calculation of coding coefficients. The effectiveness of the TDDPL approach is verified on SEED and SEED IV datasets.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献