Author:
Zhu Gancheng,Zhou Yuci,Zhou Fengfeng,Wu Min,Zhan Xiangping,Si Yingdong,Wang Peng,Wang Jun
Abstract
This prospective study was designed to propose a novel method of assessing proactive personality by combining text mining technology and Item Response Theory (IRT) to measure proactive personality more efficiently. We got freely expressed texts (essay question text dataset and social media text dataset) and item response data on the topic of proactive personality from 901 college students. To enhance validity and reliability, three different approaches were employed in the study. In Method 1, we used item response data to develop a proactive personality evaluation model based on IRT. In Method 2, we used freely expressed texts to develop a proactive personality evaluation model based on text mining. In Method 3, we utilized the text mining results as the prior information for the IRT estimation and built a proactive personality evaluation model combining text mining and IRT. Finally, we evaluated those three approaches via the confusion matrix indicators. The major result revealed that (1) the combined method based on essay question text, micro-blog text with pre-estimated IRT parameters performed the highest accuracy of 0.849; (2) the combined method using essay question text and pre-estimated IRT parameters performed the highest sensitivity of 0.821; (3) the text classification method based on essay question text had the best performance on the specificity of 0.959; and (4) if the models were considered comprehensively, the combined method using essay question text, micro-blog text, and pre-estimated IRT parameters achieved the best performance. Thus, we concluded that the novel combined method was significantly better than the other two traditional methods based on IRT and text mining.
Funder
Natural Science Foundation of Shandong Province
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献