Perceptuomotor skill acquisition in a solo manual ball-and-beam task with varying accuracy requirements

Author:

Hafkamp Marijn S. J.,Casanova Remy,Bootsma Reinoud J.

Abstract

In the manual ball-and-beam task, participants have to control a ball that is rolling continuously on a long and hand-held beam. Since the task can be performed individually, in a solo action setting, as well as collaboratively, in a (dyadic) joint action setting, it allows us to investigate how joint performances arise from individual performances, which we investigate in a series of interrelated studies. Here we focused on individual skill acquisition on the ball-and-beam task in the solo action setting, with the goal to characterize the behavioral dynamics that arise from learning to couple (ball motion) perception and (beam motion) action. By moving a beam extremity up and down to manipulate the beam’s inclination angle, the task’s objective was to roll the ball as fast as and accurately as possible between two indicated targets on the beam. Based on research into reciprocal aiming tasks, we hypothesized that the emergent dynamics of the beam’s inclination angle would be constrained by the size of the targets, such that large targets would evoke a continuous beam movement strategy, while small targets would lead to a discrete beam movement strategy. 16 participants individually practiced the task in two separate six-block sessions. Each block consisted of one trial per target-size condition (small, medium and large). Overall, the number of target hits increased over trials, due to a larger range of motion of the beam’s inclination angle, a stronger correlation between the ball and beam motion and a smaller variability of the beam motion. Contrary to our expectations, target size did not appreciably affect the shape of the beam movement patterns. Instead, we found stable inter-individual differences in the movement strategies adopted that were uncorrelated with the number of target hits on a trial. We concluded that multiple movement strategies may lead to success on the task, while individual skill acquisition was characterized by the refinement of behavioral dynamics that emerged in an early stage of learning. We speculate that such differences in individual strategies on the task may affect the interpersonal coordination that arises in joint-action performances on the task.

Publisher

Frontiers Media SA

Reference33 articles.

1. Situating coordination and cooperation between ecological and social psychology;Baron;Ecol. Psychol.,2007

2. The dynamics of human isometric pointing movements under varying accuracy requirements;Billon;Neurosci. Lett.,2000

3. Linear and logarithmic speed–accuracy trade-offs in reciprocal aiming result from task-specific parameterization of an invariant underlying dynamics;Bongers;J. Exp. Psychol. Hum. Percept. Perform.,2009

4. Modelling the ball-and- beam system from Newtonian mechanics and from Lagrange method;Bolívar-Vincenty;Twelfth LACCEI Latin American and Caribbean Conference for Engineering and Technology (LACCEI’2014).,2014

5. Ecological movement principles and how much information matters;Bootsma,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3