Persistence and Dropout in Higher Online Education: Review and Categorization of Factors

Author:

Shaikh Umair Uddin,Asif Zaheeruddin

Abstract

Online learning is becoming more popular with the maturity of social and educational technologies. In the COVID-19 era, it has become one of the most utilized ways to continue academic pursuits. Despite the ease and benefits offered by online classes, their completion rates are surprisingly low. Although several past studies focused on online dropout rates, institutions and course providers are still searching for a solution to this alarming problem. It is mainly because the previous studies have used divergent frameworks and approaches. Based on empirical research since 2001, this study presents a comprehensive review of factors by synthesizing them into a logically cohesive and integrative framework. Using different combinations of terms related to persistence and dropout, the authors explored various databases to form a pool of past research on the subject. This collection was also enhanced using the snowball approach. The authors only selected empirical, peer-reviewed, and contextually relevant studies, shortlisting them by reading through the abstracts. The Constant Comparative Method (CCM) seems ideal for this research. The authors employed axial coding to explore the relationships among factors, and selective coding helped identify the core categories. The categorical arrangement of factors will give researchers valuable insights into the combined effects of factors that impact persistence and dropout decisions. It will also direct future research to critically examine the relationships among factors and suggest improvements by validating them empirically. We anticipate that this research will enable future researchers to apply the results in different scenarios and contexts related to online learning.

Publisher

Frontiers Media SA

Subject

General Psychology

Reference117 articles.

1. Social and cognitive presence as factors in learning and student retention: an investigation of the cohort model in an iSchool setting;Alman;J. Educ. Libr. Inf. Sci.,2012

2. Secondary school mathematics teachers’ views on e-learning implementation barriers during the COVID-19 pandemic: the case of Indonesia;Almanthari;Eurasia J. Math. Sci. Technol. Educ.,2020

3. Feedback please: studying self in the online classroom;Anderson;Int. J. Instr.,2011

4. em0060Factors influencing completion and noncompletion of community college online courses;Aragon;Am. J. Dist. Educ.,2008

5. Profiles in retention part 1: design characteristics of a graduate synchronous online program;Aversa;J. Educ. Libr. Inf. Sci.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3