Predicting Success of a Digital Self-Help Intervention for Alcohol and Substance Use With Machine Learning

Author:

Ramos Lucas A.,Blankers Matthijs,van Wingen Guido,de Bruijn Tamara,Pauws Steffen C.,Goudriaan Anneke E.

Abstract

BackgroundDigital self-help interventions for reducing the use of alcohol tobacco and other drugs (ATOD) have generally shown positive but small effects in controlling substance use and improving the quality of life of participants. Nonetheless, low adherence rates remain a major drawback of these digital interventions, with mixed results in (prolonged) participation and outcome. To prevent non-adherence, we developed models to predict success in the early stages of an ATOD digital self-help intervention and explore the predictors associated with participant’s goal achievement.MethodsWe included previous and current participants from a widely used, evidence-based ATOD intervention from the Netherlands (Jellinek Digital Self-help). Participants were considered successful if they completed all intervention modules and reached their substance use goals (i.e., stop/reduce). Early dropout was defined as finishing only the first module. During model development, participants were split per substance (alcohol, tobacco, cannabis) and features were computed based on the log data of the first 3 days of intervention participation. Machine learning models were trained, validated and tested using a nested k-fold cross-validation strategy.ResultsFrom the 32,398 participants enrolled in the study, 80% of participants did not complete the first module of the intervention and were excluded from further analysis. From the remaining participants, the percentage of success for each substance was 30% for alcohol, 22% for cannabis and 24% for tobacco. The area under the Receiver Operating Characteristic curve was the highest for the Random Forest model trained on data from the alcohol and tobacco programs (0.71 95%CI 0.69–0.73) and (0.71 95%CI 0.67–0.76), respectively, followed by cannabis (0.67 95%CI 0.59–0.75). Quitting substance use instead of moderation as an intervention goal, initial daily consumption, no substance use on the weekends as a target goal and intervention engagement were strong predictors of success.DiscussionUsing log data from the first 3 days of intervention use, machine learning models showed positive results in identifying successful participants. Our results suggest the models were especially able to identify participants at risk of early dropout. Multiple variables were found to have high predictive value, which can be used to further improve the intervention.

Funder

ZonMw

Publisher

Frontiers Media SA

Subject

General Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3