Prediction of Human-Computer Interaction Intention Based on Eye Movement and Electroencephalograph Characteristics

Author:

Qu Jue,Guo Hao,Wang Wei,Dang Sina

Abstract

In order to solve the problem of unsmooth and inefficient human-computer interaction process in the information age, a method for human-computer interaction intention prediction based on electroencephalograph (EEG) signals and eye movement signals is proposed. This approach is different from previous methods where researchers predict using data from human-computer interaction and a single physiological signal. This method uses the eye movements and EEG signals that clearly characterized the interaction intention as the prediction basis. In addition, this approach is not only tested with multiple human-computer interaction intentions, but also takes into account the operator in different cognitive states. The experimental results show that this method has some advantages over the methods proposed by other researchers. In Experiment 1, using the eye movement signal fixation point abscissa Position X (PX), fixation point ordinate Position Y (PY), and saccade amplitude (SA) to judge the interaction intention, the accuracy reached 92%, In experiment 2, only relying on the pupil diameter, pupil size (PS) and fixed time, fixed time (FD) of eye movement signals can not achieve higher accuracy of the operator’s cognitive state, so EEG signals are added. The cognitive state was identified separately by combining the screened EEG parameters Rα/β with the eye movement signal pupil diameter and fixation time, with an accuracy of 91.67%. The experimental combination of eye movement and EEG signal features can be used to predict the operator’s interaction intention and cognitive state.

Publisher

Frontiers Media SA

Subject

General Psychology

Reference28 articles.

1. Pupillary responses during information processing vary with scholastic aptitude test scores.;Ahern;Science,1979

2. EEG-based BCI system for decoding finger movements within the same hand.;Alazrai;Neurosci. Lett.,2019

3. Public stereotypes of recycled water end uses with different human contact: evidence from event-related potential (ERP).;Caixia;Resour. Conserv. Recyc.,2021

4. Eye activity as a measure of human mental effort in HCI[C];Chen;Proceedings of the 16th International Conference on Intelligent user Interfaces,2011

5. A user browsing model to predict search engine click data from past observations;Dupret;Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3