Testing the Magnitude of Correlations Across Experimental Conditions

Author:

Di Plinio Simone

Abstract

Correlation coefficients are often compared to investigate data across multiple research fields, as they allow investigators to determine different degrees of correlation to independent variables. Even with adequate sample size, such differences may be minor but still scientifically relevant. To date, although much effort has gone into developing methods for estimating differences across correlation coefficients, adequate tools for variable sample sizes and correlational strengths have yet to be tested. The present study evaluated four different methods for detecting the difference between two correlations and tested the adequacy of each method using simulations with multiple data structures. The methods tested were Cohen’s q, Fisher’s method, linear mixed-effects models (LMEM), and an ad hoc developed procedure that integrates bootstrap and effect size estimation. Correlation strengths and sample size was varied across a wide range of simulations to test the power of the methods to reject the null hypothesis (i.e., the two correlations are equal). Results showed that Fisher’s method and the LMEM failed to reject the null hypothesis even in the presence of relevant differences between correlations and that Cohen’s method was not sensitive to the data structure. Bootstrap followed by effect size estimation resulted in a fair, unbiased compromise for estimating quantitative differences between statistical associations and producing outputs that could be easily compared across studies. This unbiased method is easily implementable in MatLab through the bootes function, which was made available online by the author at MathWorks.

Funder

Ministero dell’Università e della Ricerca

Publisher

Frontiers Media SA

Subject

General Psychology

Reference45 articles.

1. Testing a Point Null Hypothesis: the irreconcilability of p values and evidence.;Berger;J. Am. Statist. Assoc.,1987

2. Mapping anterior temporal lobe language areas with fMRI: a multicenter normative study.;Binder;NeuroImage,2011

3. Power analysis and effect size in mixed models: a tutorial.;Brysbaert;J. Cogn.,2018

4. The brain’s default network: anatomy, function, and relevance to disease.;Buckner;Ann. New York Acad. Sci.,2008

5. The NIH Toolbox Pattern Comparison Processing Speed Test: Normative Data.;Carlozzi;Arch. Clin. Neuropsychol.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3