Exploring Sources of Satisfaction and Dissatisfaction in Airbnb Accommodation Using Unsupervised and Supervised Topic Modeling

Author:

Ding Kai,Choo Wei Chong,Ng Keng Yap,Ng Siew Imm,Song Pu

Abstract

This study aims to examine key attributes affecting Airbnb users' satisfaction and dissatisfaction through the analysis of online reviews. A corpus that comprises 59,766 Airbnb reviews form 27,980 listings located in 12 different cities is analyzed by using both Latent Dirichlet Allocation (LDA) and supervised LDA (sLDA) approach. Unlike previous LDA based Airbnb studies, this study examines positive and negative Airbnb reviews separately, and results reveal the heterogeneity of satisfaction and dissatisfaction attributes in Airbnb accommodation. In particular, the emergence of the topic “guest conflicts” in this study leads to a new direction in future sharing economy accommodation research, which is to study the interactions of different guests in a highly shared environment. The results of topic distribution analysis show that in different types of Airbnb properties, Airbnb users attach different importance to the same service attributes. The topic correlation analysis reveals that home like experience and help from the host are associated with Airbnb users' revisit intention. We determine attributes that have the strongest predictive power to Airbnb users' satisfaction and dissatisfaction through the sLDA analysis, which provides valuable managerial insights into priority setting when developing strategies to increase Airbnb users' satisfaction. Methodologically, this study contributes by illustrating how to employ novel approaches to transform social media data into useful knowledge about customer satisfaction, and the findings can provide valuable managerial implications for Airbnb practitioners.

Publisher

Frontiers Media SA

Subject

General Psychology

Reference90 articles.

1. AdyM. Quadri-FelittiD. Consumer Research Identifies How to Present Travel Review Content for More Bookings2015

2. How do expressed emotions affect the helpfulness of a product review? Evidence from reviews using latent semantic analysis;Ahmad;Int. J. Electron. Commer.,2015

3. About us2017

4. Measuring service quality in the hotel industry: a study in a business hotel in Turkey;Akbaba;Int. J. Hosp. Manag,2006

5. On finding the natural number of topics with latent dirichlet allocation: some observations;Arun;Springer Berlin Heidelberg,2010

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3