A Hybrid Feature Selection and Ensemble Approach to Identify Depressed Users in Online Social Media

Author:

Liu Jingfang,Shi Mengshi

Abstract

Depression has become one of the most common mental illnesses, and the widespread use of social media provides new ideas for detecting various mental illnesses. The purpose of this study is to use machine learning technology to detect users of depressive patients based on user-shared content and posting behaviors in social media. At present, the existing research mostly uses a single detection method, and the unbalanced class distribution often leads to a low recognition rate. In addition, a large number of irrelevant or redundant features in high-dimensional data sets interfere with the accuracy of recognition. To solve this problem, this paper proposes a hybrid feature selection and stacking ensemble strategy for depression user detection. First, recursive elimination method and extremely randomized trees method are used to calculate feature importance and mutual information value, calculate feature weight vector, and select the optimal feature subset according to the feature weight. Second, naive bayes, k-nearest neighbor, regularized logistic regression and support vector machine are used as base learners, and a simple logistic regression algorithm is used as a combination strategy to build a stacking model. Experimental results show that compared with other machine learning algorithms, the proposed hybrid method, which integrates feature selection and ensemble, has a higher accuracy of 90.27% in identifying online patients. We believe this study will help develop new methods to identify depressed people in social networks, providing guidance for future research.

Funder

Natural Science Foundation of Shanghai

Publisher

Frontiers Media SA

Subject

General Psychology

Reference47 articles.

1. Quantifying feature importance for detecting depression using random forest;AlSagri;Int. J. Adv. Comput. Sci. Appl.,2020

2. Machine learning-based approach for depression detection in twitter using content and activity features;Alsagri;IEICE Trans. Inf. Syst. E,2020

3. Image concept detection in imbalanced datasets with ensemble of convolutional neural networks;Bahrami;Intell. Data Anal.,2019

4. Multitask learning for mental health conditions with limited social media data,152162 BentonA. MitchellM. HovyD. 10.18653/v1/E17-1015Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 1, Long Papers2017

5. Ensembles for feature selection: a review and future trends;Bolón-Canedo;Inf. Fusion,2019

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3