Trimodal prediction of speaking and listening willingness to help improve turn-changing modeling

Author:

Ishii Ryo,Ren Xutong,Muszynski Michal,Morency Louis-Philippe

Abstract

Participants in a conversation must carefully monitor the turn-management (speaking and listening) willingness of other conversational partners and adjust their turn-changing behaviors accordingly to have smooth conversation. Many studies have focused on developing actual turn-changing (i.e., next speaker or end-of-turn) models that can predict whether turn-keeping or turn-changing will occur. Participants' verbal and non-verbal behaviors have been used as input features for predictive models. To the best of our knowledge, these studies only model the relationship between participant behavior and turn-changing. Thus, there is no model that takes into account participants' willingness to acquire a turn (turn-management willingness). In this paper, we address the challenge of building such models to predict the willingness of both speakers and listeners. Firstly, we find that dissonance exists between willingness and actual turn-changing. Secondly, we propose predictive models that are based on trimodal inputs, including acoustic, linguistic, and visual cues distilled from conversations. Additionally, we study the impact of modeling willingness to help improve the task of turn-changing prediction. To do so, we introduce a dyadic conversation corpus with annotated scores of speaker/listener turn-management willingness. Our results show that using all three modalities (i.e., acoustic, linguistic, and visual cues) of the speaker and listener is critically important for predicting turn-management willingness. Furthermore, explicitly adding willingness as a prediction task improves the performance of turn-changing prediction. Moreover, turn-management willingness prediction becomes more accurate when this joint prediction of turn-management willingness and turn-changing is performed by using multi-task learning techniques.

Publisher

Frontiers Media SA

Subject

General Psychology

Reference61 articles.

1. “Towards incremental end-of-utterance detection in dialogue systems,”;Atterer;International Conference on Computational Linguistics (COLING),2008

2. “Openface 2.0: facial behavior analysis toolkit,”;Baltrusaitis;2018 13th IEEE International Conference on Automatic Face,2018

3. Iemocap: interactive emotional dyadic motion capture database;Busso;Lang. Resour. Evaluat,2008

4. Multimodal floor control shift detection;Chen;In ICMI, pages,2009

5. “Learning phrase representations using RNN encoder-decoder for statistical machine translation,”;Cho;Conference on Empirical Methods in Natural Language Processing (EMNLP),2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multimodal Voice Activity Prediction: Turn-taking Events Detection in Expert-Novice Conversation;International Conference on Human-Agent Interaction;2023-12-04

2. A Study of Prediction of Listener's Comprehension Based on Multimodal Information;Proceedings of the 23rd ACM International Conference on Intelligent Virtual Agents;2023-09-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3