An Open-Source Relational Network Derivation Script in R for Modeling and Visualizing Complex Behavior for Scientists and Practitioners

Author:

Smith Patrick,Hayes Steven C.

Abstract

Relational models of cognition provide parsimonious and actionable models of generative behavior witnessed in humans. They also inform many current computational analogs of cognition including Deep Neural Networks, Reinforcement Learning algorithms, Self-Organizing Maps, as well as blended architectures that are outperforming traditional semantic models. The black box nature of these computer models artificially limits scientific and applied progress and human computer interaction. This paper presents a first in the field attempt to model relational processes using logical derivation scripts and network graph visualizations written in the open-source R language. These tools are presented as a way for researchers and practitioners to begin to explore more complex relational models in a manner that can advance the theory and empirical science, as well as prepare the field for future collaborations with advanced computational models of cognition.

Publisher

Frontiers Media SA

Subject

General Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3