Probing the underlying principles of dynamics in piano performances using a modelling approach

Author:

Jones Gabriel,Friberg Anders

Abstract

Variations in dynamics are an essential component of musical performance in most instruments. To study the factors that contribute to dynamic variations, we used a model approaching, allowing for determination of the individual contribution of different musical features. Thirty monophonic melodies from 3 stylistic eras with all expressive markings removed were performed by 20 pianists on a Disklavier piano. The results indicated a relatively high agreement among the pianists (Cronbach’s alpha = 0.88). The overall average dynamics (across pianists) could be predicted quite well using support vector regression (R2 = 66%) from a set of 48 score-related features. The highest contribution was from pitch-related features (37.3%), followed by phrasing (12.3%), timing (2.8%), and meter (0.7%). The highest single contribution was from the high-loud principle, whereby higher notes were played louder, as corroborated by the written feedback of many of the pianists. There were also differences between the styles. The highest contribution from phrasing, for example, was obtained from the Romantic examples, while the highest contribution from meter came from the Baroque examples. An analysis of each individual pianist revealed some fundamental differences in approach to the performance of dynamics. All participants were undergraduate-standard pianists or above; however, varied levels of consistency and predictability highlighted challenges in acquiring a reliable group in terms of expertise and preparation, as well as certain pianistic challenges posed by the task. Nevertheless, the method proved useful in disentangling some underlying principles of musical performance and their relation to structural features of the score, with the potential for productive adaptation to a wider range of expressive and instrumental contexts.

Publisher

Frontiers Media SA

Subject

General Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3