Piano Education of Children Using Musical Instrument Recognition and Deep Learning Technologies Under the Educational Psychology

Author:

Li Huizi

Abstract

The objective of the study was to enhance quality education in the traditional pre-school piano education. Deep Learning (DL) technology is applied to piano education of children to improve their interest in learning music. Firstly, the problems of the traditional piano education of children were analyzed with the teaching patterns discussed under educational psychology, and a targeted music education plan was established. Secondly, musical instrument recognition technology was introduced, and the musical instrument recognition model was implemented based on DL. Thirdly, the proposed model was applied to the piano education of children to guide the music learning of students and improve their interest in piano learning. The feature recognition and acquisition of the proposed model were improved. Finally, the different teaching patterns were comparatively analyzed through the Questionnaire Survey (QS). The experimental results showed that the instrument recognition accuracy of Hybrid Neural Network (HNN) is 97.2%, and with the increase of iterations, the recognition error rate of the model decreases and stabilizes. Therefore, the proposed HNN based on DL for musical instrument recognition can accurately identify musical features. The QS results showed that the introduction of musical instrument recognition technology in the piano education of children can improve their interest in piano learning. Therefore, the establishment of the piano education patterns based on the piano education model can improve the effectiveness of teaching piano to students. This research provides a reference for the intelligentization of children's piano education.

Publisher

Frontiers Media SA

Subject

General Psychology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3