Real-Time Sound and Motion Feedback for Violin Bow Technique Learning: A Controlled, Randomized Trial

Author:

Blanco Angel David,Tassani Simone,Ramirez Rafael

Abstract

The production of good sound generation in the violin is a complex task that requires coordination and spatiotemporal control of bowing gestures. The use of motion-capture technologies to improve performance or reduce injury risks in the area of kinesiology is becoming widespread. The combination of motion accuracy and sound quality feedback has the potential of becoming an important aid in violin learning. In this study, we evaluate motion-capture and sound-quality analysis technologies developed inside the context of the TELMI, a technology-enhanced music learning project. We analyzed the sound and bow motion of 50 participants with no prior violin experience while learning to produce a stable sound in the violin. Participants were divided into two groups: the experimental group (N = 24) received real-time visual feedback both on kinematics and sound quality, while participants in the control group (N = 26) practiced without any type of external help. An additional third group of violin experts performed the same task for comparative purposes (N = 15). After the practice session, all groups were evaluated in a transfer phase without feedback. At the practice phase, the experimental group improved their bowing kinematics in comparison to the control group, but this was at the expense of impairing the sound quality of their performance. At the retention phase, the experimental group showed better results in sound quality, especially concerning control of sound dynamics. Besides, we found that the expert group improved the stability of their sound while using the technology. All in all, these results emphasize the importance of feedback technologies in learning complex tasks, such as musical instrument learning.

Funder

Horizon 2020 Framework Programme

Publisher

Frontiers Media SA

Subject

General Psychology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3