Automated Bot Detection Using Bayesian Latent Class Models in Online Surveys

Author:

Roman Zachary Joseph,Brandt Holger,Miller Jason Michael

Abstract

Behavioral scientists have become increasingly reliant on online survey platforms such as Amazon's Mechanical Turk (Mturk). These platforms have many advantages, for example it provides ease of access to difficult to sample populations, a large pool of participants, and an easy to use implementation. A major drawback is the existence of bots that are used to complete online surveys for financial gain. These bots contaminate data and need to be identified in order to draw valid conclusions from data obtained with these platforms. In this article, we will provide a Bayesian latent class joint modeling approach that can be routinely applied to identify bots and simultaneously estimate a model of interest. This method can be used to separate the bots' response patterns from real human responses that were provided in line with the item content. The model has the advantage that it is very flexible and is based on plausible assumptions that are met in most empirical settings. We will provide a simulation study that investigates the performance of the model under several relevant scenarios including sample size, proportion of bots, and model complexity. We will show that ignoring bots will lead to severe parameter bias whereas the Bayesian latent class model results in unbiased estimates and thus controls this source of bias. We will illustrate the model and its capabilities with data from an empirical political ideation survey with known bots. We will discuss the implications of the findings with regard to future data collection via online platforms.

Funder

Universität Zürich

Publisher

Frontiers Media SA

Subject

General Psychology

Reference63 articles.

1. Dynamic latent class analysis;Asparouhov;Struct. Equat. Model,2017

2. AsparouhovT. MuthénB. Bayesian Analysis of Latent Variable Models USING Mplus2010

3. Structural equation models and mixture models with continuous nonnormal skewed distributions;Asparouhov;Struct. Equat. Model,2016

4. Response styles in marketing research: A cross-national investigation;Baumgartner;J. Market. Res,2001

5. Response biases in marketing research;Baumgartner,2006

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3