Identification of sources of DIF using covariates in patient-reported outcome measures: a simulation study comparing two approaches based on Rasch family models

Author:

Dubuy Yseulys,Hardouin Jean-Benoit,Blanchin Myriam,Sébille Véronique

Abstract

When analyzing patient-reported outcome (PRO) data, sources of differential item functioning (DIF) can be multiple and there may be more than one covariate of interest. Hence, it could be of great interest to disentangle their effects. Yet, in the literature on PRO measures, there are many studies where DIF detection is applied separately and independently for each covariate under examination. With such an approach, the covariates under investigation are not introduced together in the analysis, preventing from simultaneously studying their potential DIF effects on the questionnaire items. One issue, among others, is that it may lead to the detection of false-positive effects when covariates are correlated. To overcome this issue, we developed two new algorithms (namely ROSALI-DIF FORWARD and ROSALI-DIF BACKWARD). Our aim was to obtain an iterative item-by-item DIF detection method based on Rasch family models that enable to adjust group comparisons for DIF in presence of two binary covariates. Both algorithms were evaluated through a simulation study under various conditions aiming to be representative of health research contexts. The performance of the algorithms was assessed using: (i) the rates of false and correct detection of DIF, (ii) the DIF size and form recovery, and (iii) the bias in the latent variable level estimation. We compared the performance of the ROSALI-DIF algorithms to the one of another approach based on likelihood penalization. For both algorithms, the rate of false detection of DIF was close to 5%. The DIF size and form influenced the rates of correct detection of DIF. Rates of correct detection was higher with increasing DIF size. Besides, the algorithm fairly identified homogeneous differences in the item threshold parameters, but had more difficulties identifying non-homogeneous differences. Over all, the ROSALI-DIF algorithms performed better than the penalized likelihood approach. Integrating several covariates during the DIF detection process may allow a better assessment and understanding of DIF. This study provides valuable insights regarding the performance of different approaches that could be undertaken to fulfill this aim.

Publisher

Frontiers Media SA

Subject

General Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3