Tracking Changes in Students’ Online Self-Regulated Learning Behaviors and Achievement Goals Using Trace Clustering and Process Mining

Author:

Taub Michelle,Banzon Allison M.,Zhang Tom,Chen Zhongzhou

Abstract

Success in online and blended courses requires engaging in self-regulated learning (SRL), especially for challenging STEM disciplines, such as physics. This involves students planning how they will navigate course assignments and activities, setting goals for completion, monitoring their progress and content understanding, and reflecting on how they completed each assignment. Based on Winne & Hadwin’s COPES model, SRL is a series of events that temporally unfold during learning, impacted by changing internal and external factors, such as goal orientation and content difficulty. Thus, as goal orientation and content difficulty change throughout a course, so might students’ use of SRL processes. This paper studies how students’ SRL behavior and achievement goal orientation change over time in a large (N = 250) college introductory level physics course taught online. Students’ achievement goal orientation was measured by repeated administration of the achievement goals questionnaire-revised (AGQ-R). Students’ SRL behavior was measured by analyzing their clickstream event traces interacting with online learning modules via a combination of trace clustering and process mining. Event traces were first divided into groups similar in nature using agglomerative clustering, with similarity between traces determined based on a set of derived characteristics most reflective of students’ SRL processes. We then generated causal nets for each cluster of traces via process mining and interpreted the underlying behavior and strategy of each causal net according to the COPES SRL framework. We then measured the frequency at which students adopted each causal net and assessed whether the adoption of different causal nets was associated with responses to the AGQ-R. By repeating the analysis for three sets of online learning modules assigned at the beginning, middle, and end of the semester, we examined how the frequency of each causal net changed over time, and how the change correlated with changes to the AGQ-R responses. Results have implications for measuring the temporal nature of SRL during online learning, as well as the factors impacting the use of SRL processes in an online physics course. Results also provide guidance for developing online instructional materials that foster effective SRL for students with different motivational profiles.

Funder

National Science Foundation

Publisher

Frontiers Media SA

Subject

General Psychology

Reference68 articles.

1. Issues in dealing with sequential and temporal characteristics of self- and socially-regulated learning;Azevedo,2014

2. The challenge of measuring processes and outcomes while learning from multiple representations with advanced learning technologies;Azevedo,2020

3. Understanding and reasoning about real-time cognitive, affective, and metacognitive processes to foster self-regulation with advanced learning technologies;Azevedo,2018

4. Controlling the false discovery rate: a practical and powerful approach to multiple testing journal of the royal statistical society;Benjamini;J. R. Stat. Soc.,1995

5. Learning for mastery. Instruction and curriculum. Regional education laboratory for the Carolinas and Virginia, topical papers and reprints, number 1;Bloom;Eval. Comment,1968

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3