A Radial Basis Function Neural Network Approach to Predict Preschool Teachers’ Technology Acceptance Behavior

Author:

Rad Dana,Magulod Gilbert C.,Balas Evelina,Roman Alina,Egerau Anca,Maier Roxana,Ignat Sonia,Dughi Tiberiu,Balas Valentina,Demeter Edgar,Rad Gavril,Chis Roxana

Abstract

With the continual development of artificial intelligence and smart computing in recent years, quantitative approaches have become increasingly popular as an efficient modeling tool as they do not necessitate complicated mathematical models. Many nations have taken steps, such as transitioning to online schooling, to decrease the harm caused by coronaviruses. Inspired by the demand for technology in early education, the present research uses a radial basis function (RBF) neural network (NN) modeling technique to predict preschool instructors’ technology usage in classes based on recognized determinant characteristics of technology acceptance. In this regard, this study utilized the RBFNN approach to predict preschool teachers’ technology acceptance behavior, based on the theory of planned behavior, which states that behavioral achievement, in our case the actual technology use in class, depends on motivation, intention and ability, and behavioral control. Thus, this research design is based on an adapted version of the technology acceptance model (TAM) with eight dimensions: D1. Perceived usefulness, D2. Perceived ease of use, D3. Perceived enjoyment, D4. Intention to use, D5. Actual use, D6. Compatibility, D7. Attitude, and D8. Self-efficacy. According to the TAM, actual usage is significantly predicted by the other seven dimensions used in this research. Instead of using the classical multiple linear regression statistical processing of data, we opted for a NN based on the RBF approach to predict the actual usage behavior. This study included 182 preschool teachers who were randomly chosen from a project-based national preschool teacher training program and who responded to our online questionnaire. After designing the RBF function with the actual usage as an output variable and the other seven dimensions as input variables, in the model summary, we obtained in the training sample a sum of squares error of 37.5 and a percent of incorrect predictions of 43.3%. In the testing sample, we obtained a sum of squares error of 14.88 and a percent of incorrect predictions of 37%. Thus, we can conclude that 63% of the classified data are correctly assigned to the models’ dependent variable, i.e., actual technology use, which is a significant rate of correct predictions in the testing sample. This high significant percentage of correct classification represents an important result, mainly because this is the first study to apply RBFNN’s prediction on psychological data, opening up a new interdisciplinary field of research.

Publisher

Frontiers Media SA

Subject

General Psychology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. From Technology Adaptation to Technology Adoption: An Insight into Public Islamic School Administrative Management;Lecture Notes in Networks and Systems;2024

2. Simplifying Learning Experience on a Personalized Content Recommendation System for Complex Text Material in E-Learning;Advanced Applications of Generative AI and Natural Language Processing Models;2023-12-21

3. Developing a New Artificial Intelligence Framework to Estimate the Thalweg of Rivers;Water Resources Management;2023-10-25

4. Romanian Preschool Teachers' Perceptions About Early Childhood Online Education;Handbook of Research on Learning in Language Classrooms Through ICT-Based Digital Technology;2023-02-10

5. On the Technology Acceptance Behavior of Romanian Preschool Teachers;Behavioral Sciences;2023-02-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3