A social science trust taxonomy with emergent vectors and symmetry

Author:

Mobbs Anthony E. D.,Boag Simon

Abstract

IntroductionTrust is foundational to all social science domains, but to date, there is no unifying theory or consistent measurement basis spanning the social sciences. This research hypothesized that trust forms the basis of an ontology that could unify the social science domains. The proposed ontology comprises a Cartesian plane with axes self-trust and other-trust. Self-trust manifests in dominant behaviors, and other-trust manifests in cooperative behaviors. Both axes are divided into five discrete categories, creating a matrix of 25 cells. All words in the lexicon are allocated into one of these 25 cells.MethodsThis research started with an existing 14,000-word lexicon of dominance and affiliation. The lexicon was extended by manually identifying and including socially descriptive words with information regarding self-trust, other-trust, dominance, and cooperation. The taxonomy was optimized using the Gradient Descent machine learning algorithm and commercially curated synonyms and antonyms. The t-test was employed as the objective (or loss) function for Gradient Descent optimization. Word vectors were identified using groups of four words related as synonyms and antonyms.ResultsOver 30,000 words were identified and included in the lexicon. The optimization process yielded a t-score of over 1,000. Over 226,000 vectors were identified, such as malevolent-mean-gentle-benevolent. A new form of symmetry was identified between adjectives and verbs with a common root; for example, the words reject and rejected are horizontally reflected.DiscussionThe word vectors can create a metrologically compliant basis for psychometric testing. The symmetries provide insight into causes (verbs) and effects (adjectives) in social interactions. These vectors and symmetries offer the social sciences a basis of commonality with natural sciences, enabling unprecedented accuracy and precision in social science measurement.

Publisher

Frontiers Media SA

Reference100 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3