Author:
Nalbantoğlu Hamza,Hazır Beyza Melis,Dövencioğlu Dicle N.
Abstract
Cross-modal interactions between auditory and haptic perception manifest themselves in language, such as sound symbolic words: crunch, splash, and creak. Several studies have shown strong associations between sound symbolic words, shapes (e.g., Bouba/Kiki effect), and materials. Here, we identified these material associations in Turkish sound symbolic words and then tested for their effect on softness perception. First, we used a rating task in a semantic differentiation method to extract the perceived softness dimensions from words and materials. We then tested whether Turkish onomatopoeic words can be used to manipulate the perceived softness of everyday materials such as honey, silk, or sand across different dimensions of softness. In the first preliminary study, we used 40 material videos and 29 adjectives in a rating task with a semantic differentiation method to extract the main softness dimensions. A principal component analysis revealed seven softness components, including Deformability, Viscosity, Surface Softness, and Granularity, in line with the literature. The second preliminary study used 27 onomatopoeic words and 21 adjectives in the same rating task. Again, the findings aligned with the literature, revealing dimensions such as Viscosity, Granularity, and Surface Softness. However, no factors related to Deformability were found due to the absence of sound symbolic words in this category. Next, we paired the onomatopoeic words and material videos based on their associations with each softness dimension. We conducted a new rating task, synchronously presenting material videos and spoken onomatopoeic words. We hypothesized that congruent word-video pairs would produce significantly higher ratings for dimension-related adjectives, while incongruent word-video pairs would decrease these ratings, and the ratings of unrelated adjectives would remain the same. Our results revealed that onomatopoeic words selectively alter the perceived material qualities, providing evidence and insight into the cross-modality of perceived softness.