The Application of Electroencephalogram in Driving Safety: Current Status and Future Prospects

Author:

Peng Yong,Xu Qian,Lin Shuxiang,Wang Xinghua,Xiang Guoliang,Huang Shufang,Zhang Honghao,Fan Chaojie

Abstract

The driver is one of the most important factors in the safety of the transportation system. The driver’s perceptual characteristics are closely related to driving behavior, while electroencephalogram (EEG) as the gold standard for evaluating human perception is non-deceptive. It is essential to study driving characteristics by analyzing the driver’s brain activity pattern, effectively acquiring driver perceptual characteristics, creating a direct connection between the driver’s brain and external devices, and realizing information interchange. This paper first introduces the theories related to EEG, then reviews the applications of EEG in scenarios such as fatigue driving, distracted driving, and emotional driving. The limitations of existing research have been identified and the prospect of EEG application in future brain-computer interface automotive assisted driving systems have been proposed. This review provides guidance for researchers to use EEG to improve driving safety. It also offers valuable suggestions for future research.

Publisher

Frontiers Media SA

Subject

General Psychology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. EEG-Based Driver Fatigue Detection Using Spatio-Temporal Fusion Network With Brain Region Partitioning Strategy;IEEE Transactions on Intelligent Transportation Systems;2024-08

2. Driver Drowsiness Detection Using EEG and EOG with an Attention-CNN Framework;2024 4th International Conference on Computer Communication and Artificial Intelligence (CCAI);2024-05-24

3. Augmented Recognition of Distracted Driving State Based on Electrophysiological Analysis of Brain Network;Cyborg and Bionic Systems;2024-01

4. The effects of distraction on younger drivers: A neurophysiological perspective;Applied Ergonomics;2024-01

5. Cross-subject Drowsiness Recognition Model Based on the Multi-scale Parallel Convolution of EEG Channels;2023 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom);2023-12-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3