A comparison of mental arithmetic performance in time and frequency domains

Author:

Abdul-Rahman Anmar

Abstract

The Heisenberg-Gabor uncertainty principle defines the limits of information resolution in both time and frequency domains. The limit of resolution discloses unique properties of a time series by frequency decomposition. However, classical methods such as Fourier analysis are limited by spectral leakage, particularly in longitudinal data with shifting periodicity or unequal intervals. Wavelet transformation provides a workable compromise by decomposing the signal in both time and frequency through translation and scaling of a basis function followed by correlation or convolution with the original signal. This study aimed to compare the accuracy of predictive models in mental arithmetic in time and frequency domains. Analysis of the author's response time at mental arithmetic using a soroban was modeled for two periods, an initial period (TI = 68 days), and a return period (TR = 170 days) both separated by an interval of 370 days. The median (min,max) response times in seconds (s) was longer for all tasks during the TI compared to the TR period (p < 0.001), for addition [CTAdd 62 (45, 127) vs 50 (38, 75) s] and summation [CTSum 68 (47, 108) vs 57(43, 109) s]. Response times were longer for errors regardless of the study period or task. There was an increasing phase difference for the addition and summation tasks during the TI period toward the end of the series 49.65o compared to the TR period where the phase difference between the two tasks was only 2.05o, indicating that both tasks are likely demonstrating similar learning rates during the latter study period. A comparison between time and time/frequency domain forecasts for an additional 100 tasks demonstrated higher accuracy of the maximum overlap discrete wavelet transform (MODWT) model, where the mean absolute percentage error ranged between 5.48 and 8.19% and that for the time domain models [autoregressive integrated moving average (ARIMA), generalized autoregressive conditional heteroscedasticity (GARCH)] was 6.16–10.80%.

Publisher

Frontiers Media SA

Subject

General Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3