Author:
Almeqren Monira Abdulrahman,Almuqren Latifah,Alhayan Fatimah,Cristea Alexandra I.,Pennington Diane
Abstract
ProblemSentiment Analysis (SA) automates the classification of the sentiment of people’s attitudes, feelings or reviews employing natural language processing (NLP) and computational approaches. Deep learning has recently demonstrated remarkable success in the field of SA in many languages including Arabic. Arabic sentiment analysis, however, still has to be improved, due to the complexity of the Arabic language’s structure, the variety of dialects, and the lack of lexicons. Moreover, in Arabic, anxiety as a psychological sentiment has not been the target of much research.AimThis paper aims to provide solutions to one of the challenges of Arabic Sentiment Analysis (ASA) using a deep learning model focused on predicting the anxiety level during COVID-19 in Saudi Arabia.MethodsA psychological scale to determine the level of anxiety was built and validated. It was then used to create the Arabic Psychological Lexicon (AraPh) containing 138 different dialectical Arabic words that express anxiety, which was used to annotate our corpus (Aranxiety). Aranxiety comprises 955 Arabic tweets representing the level of user anxiety during COVID-19. Bi-GRU model with word embedding was then applied to analyze the sentiment of the tweets and to determine the anxiety level.ResultsFor SA, the applied model achieved 88% on accuracy, 89% on precision, 88% on recall, and 87% for F1. A majority of 77% of tweets presented no anxiety, whereas 17% represented mild anxiety and a mere 6% represented high anxiety.ConclusionThe proposed model can be used by the Saudi Ministry of Health and members of the research community to formulate solutions to increase psychological resiliency among the Saudi population.
Reference31 articles.
1. “Multi-way sentiment classification of Arabic reviews”;Al Shboul,2015
2. “Using deep learning networks to predict telecom company customer satisfaction based on Arabic tweets;Almuqren,2019
3. AraCust: a Saudi telecom tweets corpus for sentiment analysis;Almuqren;PeerJ Comput. Sci.,2021
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献