French error type annotation for dictation: A platform with automatic error type annotation for French dictation exercises

Author:

Qin Ying,Luo Yumeng,Zhai Yuming

Abstract

Dictation is considered an efficient exercise for testing the language proficiency of learners of French as a Foreign Language (FFL). However, the traditional teaching approach to dictation reduces the instructional feedback efficiency. To remedy this, this study adopts a design-based research approach and builds an automatic error type annotation platform for dictation practice named FRETA-D (French error type annotation for dictation) to pursue intelligent pedagogical feedback for both FFL teachers and students. FRETA-D can automatically identify error boundaries as well as classify the errors into fine-grained error types in learners’ dictation texts. FRETA-D features a dataset-independent classifier based on a framework with 25 main error types, which is generalized from French grammar rules and characteristics of frequent learner dictation errors. Five French teachers are invited to evaluate the appropriateness of automatically predicted error types of 147 randomly selected samples, and the acceptance rate reaches more than 85%. Automatic evaluation on 1,009 sentences by comparing with manually labeled references also shows promising results, reaching more than 85% consistency with human judgments. The accessibility of FRETA-D has also been confirmed by 50 Chinese undergraduate FFL learners with different professional backgrounds. FRETA-D facilitates conducting dynamic statistical analysis of learners’error types. And we share the same findings with previous studies that there exist causal links between the dictation errors and learners’ mastery of French phoneme and grapheme.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Frontiers Media SA

Subject

General Psychology

Reference36 articles.

1. Le TAL au service de l’ALAO/ELAO, L’exemple des exercices de dictée automatisés;Beaufort,2011

2. Phonemizer: text to phones transcription for multiple languages in python;Bernard;J. Open Source Softw.,2021

3. An improved error model for noisy channel spelling correction;Brill,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3