Revealing underlying factors of absenteeism: A machine learning approach

Author:

Bowen Francis,Gentle-Genitty Carolyn,Siegler Janaina,Jackson Marlin

Abstract

IntroductionThe basis of support is understanding. In machine learning, understanding happens through assimilated knowledge and is centered on six pillars: big data, data volume, value, variety, velocity, and veracity. This study analyzes school attendance problems (SAP), which encompasses its legal statutes, school codes, students’ attendance behaviors, and interventions in a school environment. The support pillars include attention to the physical classroom, school climate, and personal underlying factors impeding engagement, from which socio-emotional factors are often the primary drivers.MethodsThis study asked the following research question: What can we learn about specific underlying factors of absenteeism using machine learning approaches? Data were retrieved from one school system available through the proprietary Building Dreams (BD) platform, owned by the Fight for Life Foundation (FFLF), whose mission is to support youth in underserved communities. The BD platform, licensed to K-12 schools, collects student-level data reported by educators on core values associated with in-class participation (a reported—negative or positive—behavior relative to the core values) based on Social–Emotional Learning (SEL) principles. We used a multi-phased approach leveraging several machine learning techniques (clustering, qualitative analysis, classification, and refinement of supervised and unsupervised learning). Unsupervised technique was employed to explore strong boundaries separating students using unlabeled data.ResultsFrom over 20,000 recorded behaviors, we were able to train a classifier with 90.2% accuracy and uncovered a major underlying factor directly affecting absenteeism: the importance of peer relationships. This is an important finding and provides data-driven support for the fundamental idea that peer relationships are a critical factor affecting absenteeism.DiscussionThe reported results provide a clear evidence that implementing socio-emotional learning components within a curriculum can improve absenteeism by targeting a root cause. Such knowledge can drive impactful policy and programming changes necessary for supporting the youth in communities overwhelmed with adversities.

Funder

Butler University

Indiana University

Publisher

Frontiers Media SA

Subject

General Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3