A plausible link between the time-on-task effect and the sequential task effect

Author:

Mangin Thomas,Audiffren Michel,Lorcery Alison,Mirabelli Francesco,Benraiss Abdelrhani,André Nathalie

Abstract

Mental fatigue can be studied by using either the time-on-task protocol or the sequential task protocol. In the time-on-task protocol, participants perform a long and effortful task and a decrease in performance in this task is generally observed over time. In the sequential task protocol, a first effortful or control task is followed by a second effortful task. The performance in the second task is generally worse after the effortful task than after the control task. The principal aim of the present experiment is to examine the relationship between these two decrements in performance while concomitantly using a sequential task protocol and assessing the performance of the first effortful task as a function of time-on-task. We expect a positive correlation between these two decrements in performance. A total of 83 participants performed a 30-min fatiguing mental task (i.e., a modified Stroop task) or a control task followed by a time-to-exhaustion handgrip task. As expected, this protocol combining the time-on-task and sequential task protocols allowed us to observe (1) a decrease in performance over time during the Stroop task, (2) a worst performance in the handgrip task after the Stroop task by comparison to the control task, (3) a positive correlation between these two effects. The decrease in performance during the Stroop task also correlated with the subjective measures of boredom and fatigue, whereas the detrimental effect observed in the handgrip task did not. Our findings suggest that the two fatigue-related phenomena share a common mechanism but are not completely equivalent.

Funder

Conseil Régional Aquitaine

Publisher

Frontiers Media SA

Subject

General Psychology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3