Author:
Catellani Patrizia,Biella Marco,Carfora Valentina,Nardone Antonio,Brischigiaro Luca,Manera Marina Rita,Piastra Marco
Abstract
ObjectiveWe investigated how physical activity can be effectively promoted with a message-based intervention, by combining the explanatory power of theory-based structural equation modeling with the predictive power of data-driven artificial intelligence.MethodsA sample of 564 participants took part in a two-week message intervention via a mobile app. We measured participants’ regulatory focus, attitude, perceived behavioral control, social norm, and intention to engage in physical activity. We then randomly assigned participants to four message conditions (gain, non-loss, non-gain, loss). After the intervention ended, we measured emotions triggered by the messages, involvement, deep processing, and any change in intention to engage in physical activity.ResultsData analysis confirmed the soundness of our theory-based structural equation model (SEM) and how the emotions triggered by the messages mediated the influence of regulatory focus on involvement, deep processing of the messages, and intention. We then developed a Dynamic Bayesian Network (DBN) that incorporated the SEM model and the message frame intervention as a structural backbone to obtain the best combination of in-sample explanatory power and out-of-sample predictive power. Using a Deep Reinforcement Learning (DRL) approach, we then developed an automated, fast-profiling strategy to quickly select the best message strategy, based on the characteristics of each potential respondent. Finally, the fast-profiling method was integrated into an AI-based chatbot.ConclusionCombining the explanatory power of theory-driven structural equation modeling with the predictive power of data-driven artificial intelligence is a promising strategy to effectively promote physical activity with message-based interventions.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献