A theory-based and data-driven approach to promoting physical activity through message-based interventions

Author:

Catellani Patrizia,Biella Marco,Carfora Valentina,Nardone Antonio,Brischigiaro Luca,Manera Marina Rita,Piastra Marco

Abstract

ObjectiveWe investigated how physical activity can be effectively promoted with a message-based intervention, by combining the explanatory power of theory-based structural equation modeling with the predictive power of data-driven artificial intelligence.MethodsA sample of 564 participants took part in a two-week message intervention via a mobile app. We measured participants’ regulatory focus, attitude, perceived behavioral control, social norm, and intention to engage in physical activity. We then randomly assigned participants to four message conditions (gain, non-loss, non-gain, loss). After the intervention ended, we measured emotions triggered by the messages, involvement, deep processing, and any change in intention to engage in physical activity.ResultsData analysis confirmed the soundness of our theory-based structural equation model (SEM) and how the emotions triggered by the messages mediated the influence of regulatory focus on involvement, deep processing of the messages, and intention. We then developed a Dynamic Bayesian Network (DBN) that incorporated the SEM model and the message frame intervention as a structural backbone to obtain the best combination of in-sample explanatory power and out-of-sample predictive power. Using a Deep Reinforcement Learning (DRL) approach, we then developed an automated, fast-profiling strategy to quickly select the best message strategy, based on the characteristics of each potential respondent. Finally, the fast-profiling method was integrated into an AI-based chatbot.ConclusionCombining the explanatory power of theory-driven structural equation modeling with the predictive power of data-driven artificial intelligence is a promising strategy to effectively promote physical activity with message-based interventions.

Publisher

Frontiers Media SA

Subject

General Psychology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3