Odor recognition of deteriorated mineral oils using an odor-sensing array

Author:

Liu Yuanchang,Akagawa Sosuke,Yatabe Rui,Onodera Takeshi,Fujiwara Nobuyuki,Takeda Hidekazu,Toko Kiyoshi

Abstract

The deterioration or oxidation of the mineral oil in transformers poses the risk of short circuits. Convenient and effective methods are expected to be developed. Carbon-based sensor arrays were used in this study to identify the quality variations of mineral oil for oil-filled transformers by odors. The sensitive layers of the odor-sensing system consisted of different types of GC stationary phase materials and carbon black (CB) mixtures. We made a targeted selection of GC materials by utilizing the polarities to make a sensor array based on the distinct components of mineral oil such as alkanes and xylenes by gas chromatography mass spectrometry (GC/MS) analysis. The response characteristics of the sensitive layers were used to recognize the mineral oil odors by machine learning. With laboratory air as the carrier gas, the system could distinguish mineral oil that has been in use for over 20 years from new mineral oil with an accuracy of about 93.8%. The identification accuracy achieved was about 60% for three different concentrations of unused mineral oil and the oxidized mineral oil created by the transformer’s leakage. When detecting the oxidized mineral oil with a concentration of more than 50%, the accuracy rate reached more than 80%. The odor-sensing system in this study will help inspect mineral oils in the transformer and make leakage judgments in a short time.

Publisher

Frontiers Media SA

Reference20 articles.

1. Improvement in maintenance and inspection of transformers in Japan;Amano;Proc. IEEE Power Eng. Soc. Transm. Distrib. Conf.,2002

2. Random forests;Breiman;Mach. Learn.,2001

3. Breakdown of transformer oil;Danikas;IEEE Electr. Insul. Mag.,1990

4. New sensor for gases dissolved in transformer oil based on solid oxide fuel cell;Ding;Sensors Actuators B Chem.,2014

5. Discrimination of “odorless” mineral oils alone and as diluents by behaviorally trained mice;Gamble;Chem. Senses,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3