Regression models for partially localized fMRI connectivity analyses

Author:

Smith Bonnie B.,Zhao Yi,Lindquist Martin A.,Caffo Brian

Abstract

BackgroundBrain functional connectivity analysis of resting-state functional magnetic resonance imaging (fMRI) data is typically performed in a standardized template space assuming consistency of connections across subjects. Analysis methods can come in the form of one-edge-at-a-time analyses or dimension reduction/decomposition methods. Common to these approaches is an assumption that brain regions are functionally aligned across subjects; however, it is known that this functional alignment assumption is often violated.MethodsIn this paper, we use subject-level regression models to explain intra-subject variability in connectivity. Covariates can include factors such as geographic distance between two pairs of brain regions, whether the two regions are symmetrically opposite (homotopic), and whether the two regions are members of the same functional network. Additionally, a covariate for each brain region can be included, to account for the possibility that some regions have consistently higher or lower connectivity. This style of analysis allows us to characterize the fraction of variation explained by each type of covariate. Additionally, comparisons across subjects can then be made using the fitted connectivity regression models, offering a more parsimonious alternative to edge-at-a-time approaches.ResultsWe apply our approach to Human Connectome Project data on 268 regions of interest (ROIs), grouped into eight functional networks. We find that a high proportion of variation is explained by region covariates and network membership covariates, while geographic distance and homotopy have high relative importance after adjusting for the number of predictors. We also find that the degree of data repeatability using our connectivity regression model—which uses only partial location information about pairs of ROI's—is comparably as high as the repeatability obtained using full location information.DiscussionWhile our analysis uses data that have been transformed into a common template-space, we also envision the method being useful in multi-atlas registration settings, where subject data remains in its own geometry and templates are warped instead. These results suggest the tantalizing possibility that fMRI connectivity analysis can be performed in subject-space, using less aggressive registration, such as simple affine transformations, multi-atlas subject-space registration, or perhaps even no registration whatsoever.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3