Brightness Values-Based Discriminant Functions for Classification of Degrees of Organic Matter Decomposition in Soil Thin Sections

Author:

González-Vargas Tania,Gutiérrez-Castorena Ma Del Carmen

Abstract

The decomposition of organic matter represents a fundamental pedogenetic process, since it impacts the carbon cycle and the release of nutrients to the soil. However, quantitative research aimed at micro-scale in situ analysis is scarce, despite its relevance in the decomposition process. Therefore, the objectives of this research were to generate discriminating functions of the degrees of organic matter decomposition, based on the brightness values associated with each morphological stage, and from this step, to generate thematic maps. Soil thin sections of forest and compost soils were selected, and petrographic microscope images with three light sources were taken: plane polarized light (PPL), crossed-polarized light (XPL), and crossed polarizers and a retardation plate (gypsum compensator) inserted (XPLλ). Subsequently, the RGB (red, green, blue) image was broken down into three bands, resulting in nine bands for each image. Two thousand sampling points were generated for each band, obtaining brightness values for each decomposed organic matter stage. The points were classified into four categories based on their degree of decomposition: no (A), light (B), moderate (C), and strong (D), in addition to porosity (P). Linear discriminant analysis was performed to obtain classification models for each level of decomposition. The results show that each degree of organic matter decomposition can be highlighted through specific light sources and a set of bands, with an overall accuracy of >94% and kappa coefficients of >0.75 for all classes. In addition, the resulting functions were validated in training images and high-resolution mosaics to create final thematic maps. The use of linear models automated the production and quality of thematic maps at the microscopic level, which can be useful in monitoring the organic matter decomposition process.

Publisher

Frontiers Media SA

Subject

Soil Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3