A real-time digital twin for active safety in an aircraft hangar

Author:

Casey Luke,Dooley John,Codd Michael,Dahyot Rozenn,Cognetti Marco,Mullarkey Thomas,Redmond Peter,Lacey Gerard

Abstract

The aerospace industry prioritises safety protocols to prevent accidents that can result in injuries, fatalities, or aircraft damage. One of the potential hazards that can occur while manoeuvring aircraft in and out of a hangar is collisions with other aircraft or buildings, which can lead to operational disruption and costly repairs. To tackle this issue, we have developed the Smart Hangar project, which aims to alert personnel of increased risks and prevent incidents from happening. The Smart Hangar project uses computer vision, LiDAR, and ultra-wideband sensors to track all objects and individuals within the hangar space. These data inputs are combined to form a real-time 3D Digital Twin (DT) of the hangar environment. The Active Safety system then uses the DT to perform real-time path planning, collision prediction, and safety alerts for tow truck drivers and hangar personnel. This paper provides a detailed overview of the system architecture, including the technologies used, and highlights the system’s performance. By implementing this system, we aim to reduce the risk of accidents in the aerospace industry and increase safety for all personnel involved. Additionally, we identify future research directions for the Smart Hangar project.

Funder

Science Foundation Ireland

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3