Discrete Cutaneous Feedback for Reducing Dimensions of Wearable Haptic Devices

Author:

Leonardis Daniele,Gabardi Massimiliano,Barsotti Michele,Frisoli Antonio

Abstract

In this article, we explore alternative cutaneous haptic feedback for rendering modulation of the grasping force. The aim of the study was to reduce power requirements and in turn dimensions of the actuators, in wearable devices applied to virtual or teleoperated manipulation. This is critical in certain rehabilitation or training scenarios where haptics should not interfere with dexterity of the user. In the study, we experimented discrete, pulsed cutaneous force feedback and compared it with conventional continuous proportional feedback, in a virtual pick and place task. We made use of wearable thimbles based on voice coil actuators in order to provide high-quality, low-noise haptic feedback to the participants. The evaluation was performed on the basis of both objective measurements of task performance (measured virtual forces and correct ratio) and a questionnaire evaluating participants’ preferences for the different feedback conditions. On the basis of the obtained results, in the article, we discuss the possibility of providing high-frequency, discretized cutaneous feedback only, driven by modulation of the grasping force. The opportunity is to reduce volume and mass of the actuators and also to consider alternative design solutions, due to the different requirements in terms of static and high-frequency components of the output force.

Funder

Regione Toscana

Publisher

Frontiers Media SA

Subject

General Medicine

Reference41 articles.

1. Haptic Rendering in Virtual Environments;Basdogan,2002

2. Complex Tactile Waveform Discrimination;Bensmaıa;The J. Acoust. Soc. Am.,2000

3. Design and Validation of a Complete Haptic System for Manipulative Tasks;Bergamasco;Adv. Robotics,2006

4. Integration of Serious Games and Wearable Haptic Interfaces for Neuro Rehabilitation of Children with Movement Disorders: A Feasibility Study;Bortone,2017

5. Immersive Virtual Environments and Wearable Haptic Devices in Rehabilitation of Children with Neuromotor Impairments: a Single-Blind Randomized Controlled Crossover Pilot Study;Bortone;J. Neuroeng Rehabil.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3