Touching the future of training: investigating tangible interaction in virtual reality

Author:

Rettinger Maximilian,Rigoll Gerhard

Abstract

Virtual reality offers exciting new opportunities for training. This inspires more and more training fields to move from the real world to virtual reality, but some modalities are lost in this transition. In the real world, participants can physically interact with the training material; virtual reality offers several interaction possibilities, but do these affect the training’s success, and if yes, how? To find out how interaction methods influence the learning outcome, we evaluate the following four methods based on ordnance disposal training for civilians: 1) Real-World, 2) Controller-VR, 3) Free-Hand-VR, and 4) Tangible-VR in a between-subjects experiment (n = 100). We show that the Free-Hand-VR method lacks haptic realism and has the worst training outcome. Training with haptic feedback, e.g., Controller-VR, Tangible-VR, and Real-World, lead to a better overall learning effect and matches the participant’s self-assessment. Overall, the results indicate that free-hand interaction is improved by the extension of a tracked tangible object, but the controller-based interaction is most suitable for VR training.

Publisher

Frontiers Media SA

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Human-Computer Interaction

Reference43 articles.

1. A comparison of input devices for precise interaction tasks in vr-based surgical planning and training;Allgaier;Comput. Biol. Med.,2022

2. ’A huge demand’: Ukrainian women train to clear landmines BajramiF. 2022

3. Modifying an identified curved surface shape using pseudo-haptic effect;Ban,2012

4. Resized grasping in vr: Estimating thresholds for object discrimination;Bergström,2019

5. Tangiball: Foot-enabled embodied tangible interaction with a ball in virtual reality;Bozgeyikli,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3