Attenuation of the dynamic pupil light response during screen viewing for arousal assessment

Author:

Fanourakis Marios,Chanel Guillaume

Abstract

Studies on the psychosensory pupil response often carefully control the lighting conditions in the experiment or require a calibration procedure for each subject under different light conditions for a baseline which is later used to attenuate the pupil light response (PLR) effects from the pupil using steady state models, disregarding the dynamic nature of the pupil. Such approaches are not feasible “in the wild” since they require carefully controlled experimental conditions. We address these shortcomings in the context of screen viewing in a dataset containing 140 subjects playing a first person shooter video game and use an existing dynamic PLR model to attenuate the effects of luminance. We compute the perceived luminance using the pixel values of the screen and show that using the dynamic PLR model is more effective in attenuating the effects of luminance compared to steady state models. Subsequently, we show that attenuating the PLR from the pupil size data improves the performance of machine learning models trained to predict arousing game events compared to using the pupil size without attenuating the PLR. The implications are that our approach for estimating the perceived luminance and attenuating its effects from the pupil data can be applied to screen viewing (including VR) to unobtrusively and continuously monitor users’ emotional arousal via the pupil size.

Funder

Innosuisse–Schweizerische Agentur für Innovationsförderung

Publisher

Frontiers Media SA

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving a Pupillometry Signal Through Video Luminance Modulation;2024 16th International Conference on Quality of Multimedia Experience (QoMEX);2024-06-18

2. Eye Pupil Control Analysis;2024-06-13

3. Open-DPSM: An open-source toolkit for modeling pupil size changes to dynamic visual inputs;Behavior Research Methods;2023-12-11

4. Erratum: Attenuation of the dynamic pupil light response during screen viewing for arousal assessment;Frontiers in Virtual Reality;2023-03-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3