Carbon, Nitrogen, Phosphorus, and Extracellular Soil Enzyme Responses to Different Land Use

Author:

Uwituze Yvonne,Nyiraneza Judith,Fraser Tandra D.,Dessureaut-Rompré Jacynthe,Ziadi Noura,Lafond Jean

Abstract

Extracellular soil enzymes play a key role in soil organic matter decomposition and nutrient cycling. However, it is not fully understood how these enzymes respond to different land use. Long-term research studies were used to evaluate how diversified management practices affect extracellular enzymes driving C cycling [phenol oxidases (PO), peroxidases (PP), α-glucosidase (AG), β-glucosidase (BG), cellobiohydrolase (CB), β-1,-4-Nacetylglucosaminidase (NAG)], N cycling [leucine aminopeptidase (LAP)], and P cycling [phosphomonoesterase (PME)]. The soil pH, contents of total organic C, total N, mehlich-3 P, soil respiration and soil nitrogen supply capacity were also measured. Different land use included tillage frequency, tillage regimes, mineral N fertilization, crop rotations and liquid dairy manure. Compared to medium or high tillage frequency, low tillage frequency increased total organic C and total N and soil respiration as well as NAG and PME activities, whereas it decreased soil nitrogen supply, mehlich-3 P, and soil pH, as well as PO, PP, AG, BG, CB, and LAP activities. Non till was associated with lower PP and PO activities than moldboard plow. Nitrogen fertilization decreased soil pH and PO activity but increased PME activity. Barley (Hordeum vulgare) in rotation with forage increased total organic C, total N, soil nitrogen supply and soil respiration by 31, 21, 44, and 33%, respectively, in comparison with barley in monoculture. The application of liquid dairy manure increased soil pH, total N and soil nitrogen supply and soil enzyme activities (AG, BG, NAG) in comparison to the mineral N fertilizer. When principal component analysis was performed, soil pH, PO, PP, CB, LAP, and PME were grouped in the first component, which explained the highest variance. This is the core group controlling the C, N, and P cycling. The activities of C, N, and P acquiring enzymes, soil nitrogen supply and soil respiration were related to changes in soil total C and N, and extractable P contents across a broad range of management practices. Increased PO and PP activities reflect total C decline.

Publisher

Frontiers Media SA

Subject

General Medicine

Reference91 articles.

1. Effect of land use and management practices on microbial biomass and enzyme activities in subtropical top-and sub-soils;Maharjan;Appl Soil Ecol.,2017

2. Long-term manure application effects on nutrients and selected enzymes involved in their cycling;Nyiraneza;Soil Sci Soc Am J.,2018

3. Stoichiometry of soil enzyme activity at global scale;Sinsabaugh;Ecol Lett.,2008

4. Soil quality assessment. In: Logsdon S, Clay D, Moore D, Tsegaye T, editors;Snapp,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3