Author:
Blanchy Guillaume,McLachlan Paul,Mary Benjamin,Censini Matteo,Boaga Jacopo,Cassiani Giorgio
Abstract
IntroductionCharacterization of the shallow subsurface in mountain catchments is important for understanding hydrological processes and soil formation. The depth to the soil/bedrock interface (e.g., the upper ~5 m) is of particular interest. Frequency domain electromagnetic induction (FDEM) methods are well suited for high productivity characterization for this target as they have short acquisition times and do not require direct coupling with the ground. Although traditionally used for revealing lateral electrical conductivity (EC) patterns, e.g., to produce maps of salinity or water content, FDEM inversion is increasingly used to produce depth-specific models of EC. These quantitative models can be used to inform several depth-specific properties relevant to hydrological modeling (e.g. depths to interfaces and soil water content).Material and methodsThere are a number of commercial FDEM instruments available; this work compares a multi-coil device (i.e., a single-frequency device with multiple receiver coils) and a multi-frequency device (i.e., a single receiver device with multiple frequencies) using the open-source software EMagPy. Firstly, the performance of both devices is assessed using synthetic modeling. Secondly, the analysis is applied to field data from an alpine catchment.ResultsBoth instruments retrieved a similar EC model in the synthetic and field cases. However, the multi-frequency instrument displayed shallower sensitivity patterns when operated above electrically conductive grounds (i.e., 150 mS/m) and therefore had a lower depth of investigation. From synthetic modeling, it also appears that the model convergence for the multi-frequency instrument is more sensitive to noise than the multi-coil instrument.ConclusionDespite these limitations, the multi-frequency instrument is smaller and more portable; consequently, it is easier to deploy in mountainous catchments.
Funder
Fonds De La Recherche Scientifique - FNRS
HORIZON EUROPE Marie Sklodowska-Curie Actions
Reference36 articles.
1. “Past, present, and future trends in soil electrical conductivity measurements using geophysical methods.” in handbook of agricultural geophysics, (CRC Press, Taylor & Francis Group);Corwin
2. Mapping clay content variation using electromagnetic induction techniques;Triantafilis;Comput Electron Agric,2005
3. Past, present, and future trends in soil electrical conductivity measurements using geophysical methods;Corwin,2008
4. Large-scale soil mapping using multi-configuration EMI and supervised image classification;Brogi;Geoderma,2019
5. Repeated electromagnetic induction measurements for mapping soil moisture at the field scale: validation with data from a wireless soil moisture monitoring network;Martini;Hydrology Earth System Sci,2017
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献