Use of Limiting Nutrients for Reclamation of Non-responsive Soils in Northern Ghana

Author:

Asei Rechiatu,Abaidoo Robert Clement,Opoku Andrews,Adjei-Nsiah Samuel,Antwi-Agyei Philip

Abstract

A better understanding of soil fertility factors that constraint positive crop response to fertilizer inputs will facilitate the improvement of soil nutrient management. In this study, a nutrient omission trial was carried out in a greenhouse condition to identify soil chemical properties limiting in non-responsive soils and to ascertain their effect on soybean (Glycine max) production. The treatments evaluated were control (distilled water), complete nutrient solution (all nutrients), and complete solution with the omission of each of N, P, K, Ca, Mg, and S and micronutrients (Fe, Zn, Cu, Mn, B, and Mo) arranged in a completely randomized design with three replications. After the greenhouse study, the identified limiting nutrients were tested with or without FertiSoil (commercial compost) in a 3 year field experiment. Results of the soil analyses showed low fertility status of the non-responsive soils. The sufficiency quotient index revealed non-responsive soils in all the sites to be predominantly limiting in P and K. The occurrence of other limiting nutrients was also identified: Pishegu (Zn, B), Serekpere (Mg, S), Daffiama Saapare (Ca, Mg, S), and Naaga (Mg, S, Zn, B). The nutrient inputs positively influenced soybean yield response in all the locations. The application of PKZnB with FertiSoil and FertiSoil alone significantly increased soybean grain yields by 585 and 477 kg ha−1, respectively, at Pishegu. Soybean grain yields also increased by 585, 573, and 364 kg ha−1 under the FertiSoil, PKMgS + FertiSoil, and PKMgS applications at Serekpere, respectively. At Daffiama Saapare, the highest (103%) percent increase in soybean grain yield was recorded from the combined application of PKMgSCa and FertiSoil. However, the application of FertiSoil and PKMgSCa singly equally increased soybean grain yield by 77%. Percent soybean grain yield increases of 86, 84, and 74% were observed when PKMgSZnB + FertiSoil, PKMgSZnB, and FertiSoil were applied, respectively, at Naaga. In absolute terms, 83% of the fields had a positive response to mineral fertilizer and 93% to FertiSoil and mineral fertilizer + FertiSoil applications. Organic amendment and/or site-specific fertilizer applications are the best options for alleviating poor or no crop responses to inputs and improve productivity on non-responsive soils.

Publisher

Frontiers Media SA

Reference78 articles.

1. The state of soil degradation in Sub-Saharan Africa: baselines, trajectories, and solutions;Tully;Sustainability.,2015

2. Land degradation;Olsson,2019

3. Agronomic survey to assess crop yield, controlling factors and management implications: a case-study of Babati in Northern Tanzania;Kihara;Nutr Cycl Agroecosyst.,2015

4. Micronutrients in agriculture and the world food system-future scarcity and implications (Scarcity of micronutrients in soil, food and mineral resources-background reports);Voortman,2012

5. Changes in the soil properties and availability of micronutrients after six-year application of organic and chemical fertilizers using STCR-based targeted yield equations under pearl millet-wheat cropping system;Moharana;J Plant Nutr.,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3