Mapping Soil Properties to Advance the State of Spatial Soil Information for Greater Food Security on US Tribal Lands

Author:

Fuentes Bryan,Ashworth Amanda J.,Ngunjiri Mercy,Owens Phillip

Abstract

Knowledge, data, and understanding of soils is key for advancing agriculture and society. There is currently a critical need for sustainable soil management tools for enhanced food security on Native American Tribal Lands. Tribal Reservations have basic soil information and limited access to conservation programs provided to other U.S producers. The objective of this study was to create first ever high-resolution digital soil property maps of Quapaw Tribal Lands with limited data for sustainable soil resource management. We used a digital soil mapping (DSM) approach based on fuzzy logic to model the spatial distribution of 24 soil properties at 0–15 and 15–30 cm depths. A digital elevation model with 3 m resolution was used to derive terrain variables and a total of 28 samples were collected at 0–30 cm over the 22,880-ha reservation. Additionally, soil property maps were derived from Gridded Soil Survey Geographic Database (gSSURGO) for comparison. When comparing properties modeled by DSM to those derived from gSSURGO, DSM resulted in lower root mean squared error (RMSE) for percent clay and sand at 0–15 cm, and cation exchange capacity, percent clay, and pH at 15–30 cm. Conversely, gSSURGO-derived maps resulted in lower RMSE for cation exchange capacity, pH, and percent silt at the 0–15 cm depth, and percent sand and silt at the 15–30 cm depth. Although, some of the soil properties derived from gSSURGO had lower RMSE, spatial soil property patterns modeled by DSM were in better agreement with the topographic complexity and expected soil-landscape relationships. The proposed DSM approach developed property maps at high-resolution, which sets the baseline for production of new spatial soil information for Quapaw Tribal soils. It is expected that these maps and future versions will be useful for soil, crop, and land-use decisions at the farm and Tribal-level for increased agricultural productivity and economic development. Overall, this study provides a framework for developing DSM on Tribal Lands for improving the accuracy and detail of soil property maps (relative to off the shelf products such as SSURGO) that better represents soil-forming environments and the spatial variability of soil properties on Tribal Lands.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3