Effect of Liothyronine Treatment on Dermal Temperature and Activation of Brown Adipose Tissue in Female Hypothyroid Patients: A Randomized Crossover Study

Author:

Bjerkreim Betty Ann,Hammerstad Sara Salehi,Gulseth Hanne Løvdal,Berg Tore Julsrud,Lee-Ødegård Sindre,Rangberg Anbjørg,Jonassen Christine Monceyron,Budge Helen,Morris David,Law James,Symonds Michael,Eriksen Erik Fink

Abstract

BackgroundThyroid hormones are essential for the full thermogenic response of brown adipose tissue (BAT) and have been implicated in dermal temperature regulation. Nevertheless, persistent cold-intolerance exists among a substantial proportion of hypothyroid patients on adequate levothyroxine (LT4) substitution.Materials and MethodsTo assess if skin temperature and activation of BAT during treatment with liothyronine (LT3) differs from that of LT4 treatment, fifty-nine female hypothyroid patients with residual symptoms on LT4 or LT4/LT3 combination therapy were randomly assigned in a non-blinded crossover study to receive monotherapy with LT4 or LT3 for 12 weeks each. Change in supraclavicular (SCV) skin temperature overlying BAT, and sternal skin temperature not overlying BAT, during rest and cold stimulation were assessed by infrared thermography (IRT). In addition, abundance of exosomal miR-92a, a biomarker of BAT activation, was estimated as a secondary outcome.ResultsCold stimulated skin temperatures decreased less with LT3 vs. LT4 in both SCV (mean 0.009°C/min [95% CI: 0.004, 0.014]; P<0.001) and sternal areas (mean 0.014°C/min [95% CI: 0.008, 0.020]; P<0.001). No difference in serum exosomal miR-92a abundance was observed between the two treatment groupsConclusionLT3 may reduce dermal heat loss. Thermography data suggested increased BAT activation in hypothyroid patients with cold-intolerance. However, this finding was not corroborated by assessment of the microRNA biomarker of BAT activation.Clinical Trial RegistrationClinicalTrials.gov, identifier NCT03627611

Publisher

Frontiers Media SA

Subject

Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3