Causal effects of plasma metabolites on chronic kidney diseases and renal function: a bidirectional Mendelian randomization study

Author:

Zhao Xiaodong,Gao Jialin,Kou Kai,Wang Xi,Gao Xin,Wang Yishu,Zhou Honglan,Li Faping

Abstract

BackgroundDespite the potential demonstrated by targeted plasma metabolite modulators in halting the progression of chronic kidney disease (CKD), a lingering uncertainty persists concerning the causal relationship between distinct plasma metabolites and the onset and progression of CKD.MethodsA genome-wide association study was conducted on 1,091 metabolites and 309 metabolite ratios derived from a cohort of 8,299 unrelated individuals of European descent. Employing a bidirectional two-sample Mendelian randomization (MR) analysis in conjunction with colocalization analysis, we systematically investigated the associations between these metabolites and three phenotypes: CKD, creatinine-estimated glomerular filtration rate (creatinine-eGFR), and urine albumin creatinine ratio (UACR). In the MR analysis, the primary analytical approach employed was inverse variance weighting (IVW), and sensitivity analysis was executed utilizing the MR-Egger method and MR-pleiotropy residual sum and outlier (MR-PRESSO). Heterogeneity was carefully evaluated through Cochrane’s Q test. To ensure the robustness of our MR results, the leave-one-out method was implemented, and the strength of causal relationships was subjected to scrutiny via Bonferroni correction.ResultsOur thorough MR analysis involving 1,400 plasma metabolites and three clinical phenotypes yielded a discerning identification of 21 plasma metabolites significantly associated with diverse outcomes. Specifically, in the forward MR analysis, 6 plasma metabolites were determined to be causally associated with CKD, 16 with creatinine-eGFR, and 7 with UACR. Substantiated by robust evidence from colocalization analysis, 6 plasma metabolites shared causal variants with CKD, 16 with creatinine-eGFR, and 7 with UACR. In the reverse analysis, a diminished creatinine-eGFR was linked to elevated levels of nine plasma metabolites. Notably, no discernible associations were observed between other plasma metabolites and CKD, creatinine-eGFR, and UACR. Importantly, our analysis detected no evidence of horizontal pleiotropy.ConclusionThis study elucidates specific plasma metabolites causally associated with CKD and renal functions, providing potential targets for intervention. These findings contribute to an enriched understanding of the genetic underpinnings of CKD and renal functions, paving the way for precision medicine applications and therapeutic strategies aimed at impeding disease progression.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jilin Province

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3