Regulation of enteroendocrine cell respiration by the microbial metabolite hydrogen sulfide

Author:

Larraufie Pierre,Haroun Kenza,Fleury Carla,Andriamihaja Mireille,Blachier François

Abstract

Endocrine functions of the gut are supported by a scattered population of cells, the enteroendocrine cells (EECs). EECs sense their environment to secrete hormones in a regulated manner. Distal EECs are in contact with various microbial compounds including hydrogen sulfide (H2S) which modulate cell respiration with potential consequences on EEC physiology. However, the effect of H2S on gut hormone secretion remains discussed and the importance of the modulation of cell metabolism on EEC functions remains to be deciphered. The aim of this project was to characterize the metabolic response of EECs to H2S and the consequences on GLP-1 secretion. We used cell line models of EECs to assess their capacity to metabolize H2S at low concentration and the associated modulation of cell respiration. We confirmed that like what is observed in colonocytes, colonic EEC model, NCI-h716 cell line rapidly metabolizes H2S at low concentrations, resulting in transient increased respiration. Higher concentrations of H2S inhibited this respiration, with the concentration threshold for inhibition depending on cell density. However, increased or inhibited oxidative respiration had little effect on acute GLP-1 secretion. Overall, we present here a first study showing the EEC capacity to detoxify low concentrations of H2S and used this model to acutely address the importance of cell respiration on secretory activity.

Funder

AgroParisTech

European Foundation for the Study of Diabetes

Publisher

Frontiers Media SA

Subject

Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3